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ABSTRACT 

Ever since the renaissance of transcritical R744 systems in the late 1980s, ejectors have been considered to improve 
energy efficiencies. However, the invention of the ejector dates back far longer. This review paper gives an 
overview of historical and recent developments regarding air-conditioning and refrigeration systems that use 
ejectors. More than 150 ejector papers available in the open literature have been studied and important findings and 
trends were summarized. Included are the early beginnings starting with the invention of the ejector and major fields 
of use are outlined. Research on refrigeration cycles that utilize low-grade energy to produce a refrigeration effect is 
summarized. Another major field, expansion work recovery by two-phase ejector, is described next. This application 
appears very promising when used in transcritical R744 cycles. Less commonly encountered setups, such as systems 
in which ejectors are used to raise the compressor discharge pressure instead of the suction pressure are also 
introduced. 

1. INTRODUCTION 

Henry Giffard invented the condensing-type injector in 1858. The background of Giffard’s invention was to find a 
solution to the problem of feeding liquid water to replenish the reservoir of steam engine boilers. Since then, ejectors 
have been studied intensively for a large number of different applications. This paper is the result of a detailed 
literature review conducted to give an overview of historical and present developments regarding ejector 
refrigeration systems. Typical applications are reviewed with a special emphasis on how ejectors can be utilized to 
improve the performance of air-conditioning and refrigeration systems. In the past, ejectors have mostly been used 
in two different cycles for refrigeration purposes. In 1910, Leblanc introduced a cycle having a vapor jet ejector. His 
setup allowed producing a refrigeration effect by utilizing low-grade energy. Since steam was widely available at 
that time, the so-called steam jet refrigeration systems became popular in air-conditioning of large buildings and 
railroad cars. Nowadays, such cycles are used to harness solar heat or other low-grade heat sources. The patent by 
Gay (1931) described how a two-phase ejector can be used to improve the performance of refrigeration systems by 
reducing the inherent throttling losses of the expansion valve. Typical performance characteristics, design studies, 
and recent developments regarding these two, as well as less commonly encountered ejector cycles have been 
reviewed and the results are presented in this paper. Special emphasis is put on how ejectors are currently being 
applied to improve the performance of transcritical R744 systems.  

2. EJECTOR WORKING PRINCIPLE 

As outlined in Figure 1, a typical ejector consists of a motive nozzle, a suction chamber, a mixing section, and a 
diffuser. The working principle of the ejector is based on converting internal energy and pressure related flow work 
contained in the motive fluid stream into kinetic energy. The motive nozzle is typically of a converging-diverging 
design. This allows the high-speed jet exiting the nozzle to become supersonic. 
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Figure 1: Schematic of a typical two-phase ejector design 
  
Depending on the state of the primary fluid, the flow at the exit of the motive nozzle might be two-phase. Flashing 
of the primary flow inside the nozzle might be delayed due to thermodynamic and hydrodynamic non-equilibrium 
effects. The high-speed jet starts interacting with the secondary fluid inside the suction chamber. Momentum is 
transferred from the primary flow which results in an acceleration of the secondary flow. An additional suction 
nozzle can be used to pre-accelerate the relatively stagnant suction flow. This helps to reduce excessive shearing 
losses caused by large velocity differences between the two fluid streams. Depending on the operating conditions 
both the supersonic primary flow and the secondary flow might be choked inside the ejector. Due to static pressure 
differences it is possible for the primary flow core to fan out and to create a fictive throat in which the secondary 
flow reaches sonic condition before both streams thoroughly mix in the subsequent mixing section. The mixing 
section can be designed as a segment having a constant cross-sectional area but often has a tapered inlet section. 
Most simulation models either assume mixing at constant area associated with pressure changes or mixing at 
constant pressure as a result of changes in cross-sectional area of the mixing section. The mixing process is 
frequently accompanied by shock wave phenomena resulting in a considerable pressure rise. The total flow at the 
exit of the mixing section can still have high flow velocities. Thus, a diffuser is used to recover the remainder of the 
kinetic energy and to convert it into potential energy, thereby increasing the static pressure. Typically, the total flow 
exiting the diffuser has a pressure in between that of the primary and the secondary streams entering the ejector. 
Therefore, the ejector acts as a motive-flow driven fluid pump used to elevate the pressure of the entrained fluid. 
The two major characteristics which can be used to determine the performance of an ejector are the suction pressure 
ratio and the mass entrainment ratio. The suction pressure ratio is defined as the ratio of diffuser exit pressure to the 
pressure of the suction flow entering the ejector. The mass entrainment ratio is defined as the ratio of suction mass 
flow rate to motive mass flow rate. A well-designed ejector is able to provide large suction pressure ratios and large 
mass entrainment ratios at the same time. 

3. HISTORICAL BACKGROUND AND TYPICAL EJECTOR APPLICATIONS

Depending on the application, injector is synonymously used for ejector. The main difference in this case is the 
discharge pressure at the diffuser exit. While the diffuser exit pressure of the ejector is closer to that of the suction 
flow than that of the motive fluid, the term injector is sometimes used for applications in which the diffuser 
discharge pressure can actually reach the pressure of the driving fluid. Other synonyms encountered in the literature 
are eductor, diffusion pump, aspirator, and jet pump. In case the total flow exiting the diffuser consists of only a 
single component, the most commonly encountered ejector flows can be classified according to Table 1. 
  

Table 1: Commonly encountered single-component flow ejector types 

Driving 
flow 

Driven 
flow 

Exit 
flow Remarks 

Vapor jet ejector Vapor Vapor Vapor Two-phase flow can occur, shock waves possible 

Liquid jet ejector Liquid Liquid Liquid Single-phase flow without shock waves 

Condensing ejector Vapor Liquid Liquid Two-phase flow with condensation of driving vapor, strong shock 
waves 

Two-phase ejector Liquid Vapor Two-
phase Two-phase flow, shock waves possible 
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Giffard invented the condensing ejector in 1858. Kranakis (1982) gave a very detailed overview of his 
groundbreaking work. The background of Giffard’s invention was to find a solution to the problem of feeding liquid 
water to replenish the reservoir of steam engine boilers. Besides being not very reliable, mechanical pumps required 
the steam engine to move in order to provide water to the boiler. This inherent disadvantage could be overcome with 
Giffard’s ejector, because the motive steam required to pump liquid water was also available during standstill. 
Although supersonic flow at the exit of the motive nozzle would have been preferable, Giffard and other early 
ejector designers used converging motive nozzles. The converging-diverging motive nozzle was not introduced until 
1869 by an engineer named Schau. Interestingly, this appears to be even earlier than de Laval’s work, who carried 
out his first supersonic steam nozzle experiments in 1890. Furthermore, in the case of Giffard’s ejector, the 
condensation of steam in the mixing section caused a void as a result of the sudden increase in density. This effect 
might have created an even larger suction effect than that caused by the induced current theory. Giffard empirically 
decided to use small diffuser angles, because he was concerned with strong turbulence effects caused by too sharply 
diverging angles. He modified his original ejector design by integrating a spindle valve which could be axially 
moved to control the motive flow rate. This design is shown in Figure 2. 

Ejectors have since been used in a variety of different applications. Chunnanond and Aphornratana (2004) 
mentioned that in 1901, Parsons first used an ejector to remove non-condensable gases from steam condensers by 
utilizing the ejector’s vacuum capabilities. The relatively simple and maintenance-free design has made the ejector 
the preferred pumping device when high reliability is required. Water or steam driven ejectors are being used to 
provide emergency cooling water to nuclear reactors, as reported by Beithou and Aybar (2000). In fact, the advent of 
nuclear power technology resulted in a number of fundamental ejector research studies during the later half of the 
20th century. Ejectors can be operated in harsh temperature and pressure environments. The chemical industry makes 
use of ejectors to pump hazardous or combustible substances, as pointed out by Power (1993). Elgozali et al. (2002) 
investigated a gas-liquid reactor with an ejector-type gas distributor. In this application, the ejector was basically 
used to enhance the desired mixing process of two different fluid streams. Bartosiewicz et al. (2005) reported about 
multi-stage ejectors being used to simulate aerospace altitude testing of equipment by reducing test chamber 
pressures. These facilities house some of the largest ejectors ever built, as shown in Figure 3. Bartosiewicz et al.
(2005) further mentioned the use of ejectors in aircraft propulsion systems for thrust augmentation purposes and to 
reduce the thermal signature of the exhaust gases. Addy et al. (1981) conducted research on ejectors used in high 
energy chemical lasers. ASHRAE (1983) pointed out the utilization of ejectors in direct contact evaporative cooling 
applications used for drying medical drugs and food items. 

                     
       

4. EJECTORS USED IN AIR-CONDITIONING AND REFRIGERATION SYSTEMS 

In the past, ejectors have mostly been used in two different cycles for refrigeration purposes. In 1910, Leblanc 
introduced a cycle having a vapor jet ejector. His setup allowed producing a refrigeration effect by utilizing low-
grade energy. Since steam was widely available at that time, the so-called steam jet refrigeration systems became 
popular in air-conditioning of large buildings and railroad cars. The patent by Gay (1931) described how the two-
phase ejector can be used to improve the performance of refrigeration systems by reducing the inherent throttling 
losses of the expansion valve.  

4.1  Ejector for Utilization of Low-Grade Energy 
Figure 4 shows the layout of a transcritical R744 vapor jet ejector cycle which utilizes a low-grade energy source to 
produce a refrigeration effect. The corresponding pressure-specific enthalpy diagram visualizes the processes 
involved. In an ideal cycle, a fraction of the liquid coming from the condenser is isentropically pumped to a higher 

Figure 2: Henri Giffard’s ejector from 1864 with integrated 
spindle valve for control of motive flow rate (Kranakis, 1982)

Figure 3: Multi-stage ejector facility used to create high 
altitude testing environments (Northrop Grumman, 2007) 
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pressure before it enters the generator. A low-grade energy source can be used to isobarically heat the fluid in the 
generator. For subcritical systems, the liquid entering the generator is vaporized. The heated flow enters the motive 
nozzle where it isentropically expands to the mixing pressure. The motive vapor jet entering the mixing chamber has 
a high kinetic energy. Depending on the fluid temperature at the generator exit, it is possible that the motive stream 
is expanded into the two-phase region. The suction flow exiting the evaporator is entrained into the suction chamber 
by momentum transfer from the motive to the suction flow. A suction nozzle can be used to isentropically pre-
accelerate the secondary flow before it is mixed with the primary flow. Depending on the specific geometry of the 
ejector, the mixing process is often assumed to occur at constant pressure or at constant cross-sectional area. The 
mixing process is not fully reversible unless the two fluid streams enter the mixing section at equal velocities. This 
is not possible, because a velocity difference is needed in order to transfer momentum. The pressure of the total flow 
is increased in the subsequent diffuser by isentropically converting the remainder of the kinetic energy into potential 
energy. The vapor exiting the diffuser is condensed at constant pressure before a fraction of the liquid is sent again 
to the pump. The pressure of the remainder of the liquid flow is isenthalpically lowered before it enters the 
evaporator where heat is isobarically absorbed to provide the desired refrigeration effect. The main advantage of the 
vapor jet ejector cycle is that it can produce a refrigeration effect by utilizing low-grade energy sources. Most vapor 
jet ejectors utilize waste heat to energize the motive flow in the generator. Chunnanond and Aphornratana (2004) 
also mentioned research carried out on solar-powered vapor jet ejector systems. Huang et al. (1985) and Garris et al.
(1998) cited work carried out on automotive air-conditioning systems using the hot exhaust gases from the 
combustion engine as an energy source. 

Ouzzane and Aidoun (2003) explained that in the vapor jet cycle a liquid pump, a vapor generator, and an ejector 
replace the compressor. As a side effect, the liquid pump requires less work than a compressor for the same pressure 
increase, because the process follows a steeper isentrope in the pressure-specific enthalpy diagram. Huang and 
Chang (1999) further pointed out that the vapor jet cycle does not require any lubrication, thereby reducing the 
negative impact on performance caused by lubrication oil in conventional vapor compression systems. In 
comparison to absorption refrigeration systems, which also utilize low-grade energy, the vapor jet ejector system 
does not require working fluid mixtures, as pointed out by Cizungu et al. (2001). Both the vapor jet cycle and the 
absorption system achieve relatively low COPs. Garris et al. (1998) pointed out that consequently, oversized 
condensers are required for these systems. A large number of studies regarding vapor jet ejector cycles used for air-
conditioning and refrigeration are available in the open literature. The majority of these studies are numerical 
simulations, outnumbering the experimental investigations by far. Chunnanond and Aphornratana (2004) 
contributed a comprehensive review paper in which they gave a detailed overview of vapor jet ejector refrigeration 
systems. They summarized basic theories regarding fundamental ejector flow features and discussed important 
design issues. Huang et al. (1985) experimented with an R113 vapor jet ejector system. Their cooling capacity 
ranged between 0.4 kW and 2.2 kW with COPs between 0.02 and 0.26. They presented ejector performance maps 
and placed special emphasis on investigating flow choking inside the ejector. In a subsequent study, Huang et al.
(1998) were able to show experimentally that the COP of a vapor jet ejector cycle is comparable to that of 
absorption systems. Their R141b solar-powered system had a COP of 0.5 at a cooling capacity of 10.5 kW. The 
generation, condensation, and evaporation temperatures were 90 oC, 28 oC, and 8 oC, respectively. They also showed 
that the ejector performance decreased for unchoked flow conditions.  

4.2 Ejector for Recovery of Expansion Work
As already mentioned, a two-phase ejector can be used to improve the performance of a refrigeration system by 
reducing the throttling losses associated with the use of an expansion valve. The layout of such a transcritical R744 
cycle and the corresponding pressure-specific enthalpy diagram are shown in Figure 5. It should be noted that the 
mass flow rate through the gas cooler is not identical to the evaporator mass flow rate. For this reason, Lorentzen 
(1983) suggested to use a temperature-entropy diagram rather than a temperature-specific entropy diagram. 

In an ideal cycle, saturated vapor coming from the vapor port of the vapor-liquid separator enters the compressor 
and is isentropically compressed to a high pressure and temperature. Heat is isobarically rejected in the gas cooler. 
In the motive nozzle, the supercritical motive fluid is isentropically expanded to the mixing pressure. During the 
expansion process the motive fluid gains kinetic energy. Furthermore, as the fluid crosses the saturated liquid line 
the refrigerants starts to flash, becoming a two-phase flow. In reality however, the expansion process might occur 
too rapidly for the two-phase mixture to maintain hydrodynamic and thermodynamic equilibrium. Consequently, 
these metastability effects might cause a delayed flashing of the flow which could potentially influence the 
performance of the ejector. The high-speed two-phase flow transfers momentum during the entrainment of the 
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secondary fluid exiting the evaporator. A suction nozzle can be used to isentropically pre-accelerate the suction flow 
before it mixes with the primary stream. Depending on the specific geometry of the ejector, the mixing process is 
often assumed to occur at constant pressure or at constant cross-sectional area. As in the case of the vapor jet ejector, 
irreversible shearing occurs when the two fluid streams enter the mixing chamber at different velocities. Under 
certain conditions, complex shock wave phenomena accompany the mixing process. In the subsequent diffuser, 
kinetic energy is converted into potential energy which causes an isentropic compression of the two-phase flow 
before it enters the vapor-liquid separator. While the vapor portion of the separated flow is returned to the 
compressor, the pressure of the liquid is isenthalpically reduced before it enters the evaporator. The evaporator 
isobarically absorbs heat to provide the desired refrigeration effect. It should be noted that some of the models 
available in the open literature neglect the fact that the pressure at the inlet of the mixing chamber has to be lower 
than at the evaporator exit. This pressure differential is needed for the entrainment of suction flow.  

      

There are two main advantages of Gay’s (1931) refrigeration cycle using a two-phase ejector. First, the cooling 
capacity increases, because the ideally isentropic processes inside the ejector result in larger specific enthalpy 
differences across the evaporator in comparison to a system having an isenthalpic expansion valve. Second, the COP 
of the ejector system is improved, primarily because the compressor work is reduced. The suction pressure of the 
compressor is increased due to the compression effect provided by the ejector. The compressor work is further 
reduced by higher compressor efficiencies as a result of reduced compression ratios. As in the case of air-
conditioning and refrigeration systems using a vapor jet ejector, the available literature contains far more numerical 
two-phase ejector studies than experimental investigations. Kornhauser (1990) presented a one-dimensional iterative 
model for an R12 system with two-phase ejector. He defined efficiencies for the individual ejector components, 
namely the primary nozzle, the suction nozzle, and the diffuser. These efficiencies were introduced to represent 
deviations from isentropic processes. He showed a theoretical COP improvement of up to 21% over the 
conventional cycle with expansion valve. By variation of the constant mixing pressure, he showed that mixing losses 
caused by shearing can be reduced when both streams enter the mixing chamber with similar velocities. Many of the 
two-phase ejector models available in the open literature are based on this numerical approach. Kornhauser’s study 
triggered intensive ejector research effort in his workgroup. Several of his students worked on improving the ejector 
after initial experimental results obtained by Menegay (1991) showed COP improvements of only a few percent. He 
observed that for higher mass flow rates the pressure rise caused by the ejector decreased. He thought that excessive 
frictional pressure drop and delayed flashing of the motive flow were responsible for the observed trends. Even 
though the ejector system was investigated experimentally, the results were only compared to a theoretically 
determined performance of a hypothetical baseline system with expansion valve. Kornhauser’s iterative modeling 
approach was used by Nehdi et al. (2007) to numerically investigate the performance of a vapor compression system 
using a two-phase ejector instead of an expansion valve. All of the different working fluids tested were characterized 
by subcritical heat rejection. Among the fluids considered, R141b yielded the highest COP improvements, 22%, 
over a comparable baseline system with expansion valve. 

Butrymowicz (2003) chose a different approach in his efforts to model two-phase ejector systems. He argued that 
the iterative one-dimensional modeling routine suggested by Kornhauser (1990) did not explicitly take into account 
mixing shock waves. Therefore, he constructed an ejector performance curve by relating the suction pressure ratio to 
the mass entrainment ratio. He used the same coordinates to model the remainder of the refrigeration system. The 
intersection of the two curves then yielded the operating performance of the entire system including the ejector. This 

Figure 4: Transcritical R744 vapor jet refrigeration cycle for 
utilization of a low-grade energy source and corresponding 

pressure-specific enthalpy diagram

Figure 5: Transcritical R744 refrigeration cycle using a two-phase 
ejector for expansion work recovery and corresponding pressure-

specific enthalpy diagram 
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approach appears to be somewhat similar to the commonly used selection process for pumping equipment, in which 
the system characteristics are intersected with the fan or pump curves on a pressure-volumetric flow rate diagram. 

More research on two-phase ejector systems was reported by Takeuchi et al. (2004). For the transportation 
refrigeration system investigated, it was claimed that the use of a two-phase ejector simultaneously improved the 
cooling capacity and COP by 25% to 45% and 45% to 65%, respectively. Even though these improvements appear 
to be very high, no other specific details were given, not even which working fluid was used. Furthermore, nothing 
was said whether these values were determined computationally or experimentally. It was also mentioned that the 
integration of a two-phase ejector should result in less additional cost and lower weight penalties in comparison to 
systems using turbo-expander machinery to recovery expansion work. Ozaki et al. (2004) presented more details 
related to the same two-phase ejector research efforts. Their study included the presentation of limited experimental 
results showing COP improvements of 20% over conventional transcritical R744 automotive systems with 
expansion valve at an outdoor temperature of 35 oC. Potentially easier implementation of a high-side pressure 
control mechanism was mentioned as another advantage of the ejector in comparison to transcritical expander 
systems. In 2003, the Denso corporation from Japan introduced a hot water heater using a transcritical R744 heat 
pump with two-phase ejector to the Japanese market. A patent search containing the keywords “Ejector” and 
“Denso” returned more than 50 US patents granted to the company between mid-2002 and mid-2007. Takeuchi et 
al. (2002) were named as inventors on the first patent of this series. 

Li and Groll (2004) and Li and Groll (2005) presented simulation results of transcritical R744 air-conditioning 
systems with a two-phase ejector. Their analysis was also based on Kornhauser’s approach. COP improvements of 
up to 16% were reported. No internal heat exchangers were included in the systems investigated. They offered a 
potential solution to a problem they foresaw in regard to controlling the system. A cycle was suggested in which part 
of the vapor coming from the vapor-liquid separator was injected to the liquid entering the evaporator. They claimed 
this was necessary to relax the existing constraint between the entrainment ratio and the vapor quality at the exit of 
the diffuser. In a subsequent publication by Li (2006), experimental R744 ejector data were presented as well, 
although the emphasis of the work was on modeling a transcritical R744 two-phase ejector system and to study the 
effects of different geometries and operational conditions. Interestingly, it was concluded that for ambient 
temperatures of more than 49 oC, the ejector would not be capable of improving the performance in comparison to 
that of the baseline system with expansion valve. Li (2006) reasoned that at these high ambient temperatures the 
entrainment ratio would drop significantly. This finding appears somewhat counter-intuitive, because the expansion 
work recovery potential should actually increase with increasing ambient temperature for otherwise unchanged 
conditions. 

Elbel and Hrnjak (2004a) also used Kornhauser’s approach to numerically investigate the effect of using an IHX on 
the performance of a transcritical R744 ejector system. They showed that the highest COPs can be achieved with 
ejector and IHX, even though both devices compete in the reduction of throttling losses. Another finding of their 
numerical study was that the high-side pressure of the transcritical ejector system can still be used to maximize 
system performance. Later, Elbel and Hrnjak (2006a) and Elbel and Hrnjak (2008) were able to verify their 
numerical predictions by experimental results. Their prototype was equipped with a needle extending into the throat 
of the motive nozzle, allowing for high-side pressure control. In comparison to the expansion valve system, their 
ejector setup simultaneously improved the COP and cooling capacity by 7% and 8%, respectively. They also pointed 
out that the use of an ejector may result in reduced evaporator pressure drop, increased evaporative heat transfer 
coefficient, and an improved refrigerant distribution in the evaporator, in accordance with their earlier results they 
obtained with a concept they called Flash Gas Bypass (Elbel and Hrnjak, 2004b). Elbel and Hrnjak (2006b) used 
temperature-specific entropy diagrams to visualize the interference between expansion work recovery and internal 
heat exchange. They showed that both of these mechanisms are in competition for the same temperature difference. 
They predicted that an ejector having 70% efficient nozzles and diffuser can replace an IHX with 60% effectiveness 
to achieve the same COP at a given cooling capacity. Elbel and Hrnjak (2007) presented the first high-side pressure 
control equation used to maximize the COP of a transcritical R744 two-phase ejector system. Furthermore, they 
identified the existence of mixing shock waves which they detected through static wall pressure distributions along 
the axis of the ejector. Images of the ejector mixing section were obtained through high-speed flow visualization. 
The images were taken under realistic operating conditions by using a semi-transparent ejector. 
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4.3 Other Ejector Cycles 
This section presents less commonly encountered ejector cycles for air-conditioning and refrigeration purposes. 
While some of the concepts presented are solely theoretical, others have been built and tested successfully. 
Lorentzen (1983) presented a refrigeration cycle in which expansion work recovered by an ejector was used to drive 
a liquid recirculation loop to improve the evaporator performance. The cycle layout is shown in Figure 6. Kozinski 
(1996) basically used the same principle in his patent in which he described a method to improve automotive air-
conditioning systems. Tomasek and Radermacher (1995) numerically investigated how an ejector can be utilized to 
improve the performance of a domestic household refrigerator-freezer having two evaporators. In this system, the 
flow exiting the high-temperature evaporator was used as ejector motive fluid to entrain flow coming from the exit 
of the low-temperature evaporator. Their analysis resulted in a COP improvement of up to 12% over conventional 
refrigerator-freezer systems. Riffat and Holt (1998) presented a numerical study to simulate the performance of a 
heat pipe with an integrated ejector. Their cycle was actually a modification of the vapor jet ejector cycle, but 
instead of using a pump, capillary action and a wick were used to transport the liquid to the vapor generator. A basic 
one-dimension modeling approach yielded COPs of up to 0.7 with environmentally friendly working fluids such as 
methanol. 

Another interesting ejector concept was recently introduced by Bergander (2005). In this innovative approach, the 
ejector is used to raise the compressor discharge pressure rather than the suction pressure as in the case of two-phase 
ejector systems. The layout for such a system using transcritical R744 and the corresponding pressure-specific 
enthalpy diagram are shown in Figure 7. A liquid pump and an ejector can be used to act as a compressor stage. 
COP improvements can be achieved, because for the same pressure rise, the isentropic pump work is far less than 
that of a compressor. However, ejector inefficiencies can easily annihilate these potential improvements. In this 
particular setup, strong condensation shock waves are expected to take place inside the ejector. The pressure rise 
associated with shock waves represents a non-isentropic compression process. Theoretically it would be possible to 
eliminate the compressor from the system shown in Figure 7 in case all of the required pressure rise would be 
provided by the liquid pump. Such a cycle would have the advantage of not requiring any lubrication oil to circulate 
through the refrigeration system. Kemper et al. (1966) received a patent for this invention. They explicitly 
mentioned R744 as a potential working fluid for their setup.  

      

5. CONCLUSIONS 

The majority of the available literature concerned with ejectors used in air-conditioning and refrigeration describes 
numerical simulations of vapor jet ejectors. A number of established ejector flow theories point out the importance 
of flow choking and shock wave phenomena. However, significantly less literature is available on the topic of two-
phase ejectors which can be used instead of an expansion valve to recover expansion work. In the particular case of 
R744, some numerical work on two-phase ejectors has been published in the open literature, but the availability of 
experimental R744 ejector data appears to be extremely limited. While many of the flow theories and design 
guidelines developed for single-phase ejectors should be transferable to two-phase ejectors, a number of significant 
differences exist. Metastability effects caused by delayed flashing of the primary nozzle flow as well as supersonic 
two-phase flow are believed to add more complexity to the task of designing efficient two-phase ejectors. 

Figure 6: Ejector cycle using expansion work to drive liquid 
recirculation through evaporator (Lorentzen, 1983)

Figure 7: Transcritical R744 refrigeration cycle using a 
condensing ejector to increase the compressor discharge pressure 

and a corresponding pressure-specific enthalpy diagram 
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